Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
1.
Vasc Med ; : 1358863X231175183, 2023 Jun 01.
Article in English | MEDLINE | ID: covidwho-20233743
2.
Circ Res ; 132(10): 1358-1373, 2023 05 12.
Article in English | MEDLINE | ID: covidwho-2319368

ABSTRACT

COVID-19 has become the first modern-day pandemic of historic proportion, affecting >600 million individuals worldwide and causing >6.5 million deaths. While acute infection has had devastating consequences, postacute sequelae of SARS-CoV-2 infection appears to be a pandemic of its own, impacting up to one-third of survivors and often causing symptoms suggestive of cardiovascular phenomena. This review will highlight the suspected pathophysiology of postacute sequelae of SARS-CoV-2, its influence on the cardiovascular system, and potential treatment strategies.


Subject(s)
COVID-19 , Cardiovascular System , Humans , SARS-CoV-2 , Pandemics , Lung , Disease Progression
3.
J Thromb Thrombolysis ; 55(3): 426-431, 2023 Apr.
Article in English | MEDLINE | ID: covidwho-2174792

ABSTRACT

Vaccination against COVID-19 reduces infection-related mortality. Unfortunately, reports of vaccine-induced immune thrombotic thrombocytopenia (VITT) in individuals administered adenovirus-vector-based vaccines (ChAdOx1 nCoV-19 and Ad26.COV2.S) have spurred side effect concerns. To address vaccine hesitancy related to this, it is essential to determine the incidence of VITT (defined by a 50% decrease in platelet count and positive anti-PF4 immunoassay within 4-28 days after vaccination) among patients administered two doses of an mRNA-based COVID-19 vaccination. We identified a retrospective cohort of 223,345 patients in the Cleveland Clinic Enterprise administered a COVID-19 vaccine at any location in Northeast Ohio and Florida from 12/4/2020 to 6/6/2021. 97.3% of these patients received an mRNA-based vaccination. Patients with: (1) a serial complete blood count both before and after vaccination and (2) a decrease in platelet count of ≥ 50% were selected for chart review. The primary outcome was the incidence of thrombotic events, including venous thromboembolism (VTE) and arterial thrombosis, 4-28 days post vaccination. Of 74 cohort patients with acute thrombosis, 72 (97.3%) demonstrated clear etiologies, such as active malignancy. Of two patients with unprovoked thrombosis, only one had findings concerning for VITT, with a strongly positive anti-PF4 antibody assay. In this large, multi-state, retrospective cohort, of 223,345 patients (97.2% of whom received the mRNA-based mRNA-1273 or BNT162b2 vaccines), we detected a single case that was concerning for VITT in a patient who received an mRNA vaccine. The overwhelming majority of patients with a thrombotic event 4-28 days following vaccination demonstrated clear etiologies.


Subject(s)
COVID-19 , Purpura, Thrombocytopenic, Idiopathic , Thrombocytopenia , Humans , COVID-19 Vaccines/adverse effects , Ad26COVS1 , BNT162 Vaccine , ChAdOx1 nCoV-19 , Retrospective Studies , COVID-19/prevention & control , Vaccination/adverse effects , Thrombocytopenia/chemically induced
4.
J Gen Intern Med ; 37(5): 1304-1305, 2022 04.
Article in English | MEDLINE | ID: covidwho-1603642
6.
Pharmacol Rev ; 73(3): 924-967, 2021 07.
Article in English | MEDLINE | ID: covidwho-1447969

ABSTRACT

The endothelium, a cellular monolayer lining the blood vessel wall, plays a critical role in maintaining multiorgan health and homeostasis. Endothelial functions in health include dynamic maintenance of vascular tone, angiogenesis, hemostasis, and the provision of an antioxidant, anti-inflammatory, and antithrombotic interface. Dysfunction of the vascular endothelium presents with impaired endothelium-dependent vasodilation, heightened oxidative stress, chronic inflammation, leukocyte adhesion and hyperpermeability, and endothelial cell senescence. Recent studies have implicated altered endothelial cell metabolism and endothelial-to-mesenchymal transition as new features of endothelial dysfunction. Endothelial dysfunction is regarded as a hallmark of many diverse human panvascular diseases, including atherosclerosis, hypertension, and diabetes. Endothelial dysfunction has also been implicated in severe coronavirus disease 2019. Many clinically used pharmacotherapies, ranging from traditional lipid-lowering drugs, antihypertensive drugs, and antidiabetic drugs to proprotein convertase subtilisin/kexin type 9 inhibitors and interleukin 1ß monoclonal antibodies, counter endothelial dysfunction as part of their clinical benefits. The regulation of endothelial dysfunction by noncoding RNAs has provided novel insights into these newly described regulators of endothelial dysfunction, thus yielding potential new therapeutic approaches. Altogether, a better understanding of the versatile (dys)functions of endothelial cells will not only deepen our comprehension of human diseases but also accelerate effective therapeutic drug discovery. In this review, we provide a timely overview of the multiple layers of endothelial function, describe the consequences and mechanisms of endothelial dysfunction, and identify pathways to effective targeted therapies. SIGNIFICANCE STATEMENT: The endothelium was initially considered to be a semipermeable biomechanical barrier and gatekeeper of vascular health. In recent decades, a deepened understanding of the biological functions of the endothelium has led to its recognition as a ubiquitous tissue regulating vascular tone, cell behavior, innate immunity, cell-cell interactions, and cell metabolism in the vessel wall. Endothelial dysfunction is the hallmark of cardiovascular, metabolic, and emerging infectious diseases. Pharmacotherapies targeting endothelial dysfunction have potential for treatment of cardiovascular and many other diseases.


Subject(s)
Atherosclerosis , COVID-19 Drug Treatment , COVID-19 , Cardiovascular Agents , Cardiovascular Diseases , Endothelium, Vascular , Atherosclerosis/drug therapy , Atherosclerosis/metabolism , Atherosclerosis/physiopathology , COVID-19/metabolism , COVID-19/physiopathology , Cardiovascular Agents/classification , Cardiovascular Agents/pharmacology , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/metabolism , Cardiovascular Diseases/physiopathology , Drug Discovery , Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Endothelium, Vascular/physiopathology , Humans , Molecular Targeted Therapy/methods , Molecular Targeted Therapy/trends , SARS-CoV-2
8.
J Racial Ethn Health Disparities ; 9(5): 2011-2018, 2022 10.
Article in English | MEDLINE | ID: covidwho-1401116

ABSTRACT

OBJECTIVE: There is a paucity of data on how race affects the clinical presentation and short-term outcome among hospitalized patients with SARS-CoV-2, the 2019 coronavirus (COVID-19). METHODS: Hospitalized patients ≥ 18 years, testing positive for COVID-19 from March 13, 2020 to May 13, 2020 in a United States (U.S.) integrated healthcare system with multiple facilities in two states were evaluated. We documented racial differences in clinical presentation, disposition, and in-hospital outcomes for hospitalized patients with COIVD-19. Multivariable regression analysis was utilized to evaluate independent predictors of outcomes by race. RESULTS: During the study period, 3678 patients tested positive for COVID-19, among which 866 were hospitalized (55.4% self-identified as Caucasian, 29.5% as Black, 3.3% as Hispanics, and 4.7% as other racial groups). Hospitalization rates were highest for Black patients (36.6%), followed by other (28.3%), Caucasian patients (24.4%), then Hispanic patients (10.7%) (p < 0.001). Caucasian patients were older, and with more comorbidities. Absolute lymphocyte count was lowest among Caucasian patients. Multivariable regression analysis revealed that compared to Caucasians, there was no significant difference in in-hospital mortality among Black patients (adjusted odds ratio [OR] 0.53; 95% confidence interval [CI] 0.26-1.09; p = 0.08) or other races (adjusted OR 1.62; 95% CI 0.80-3.27; p = 0.18). Black and Hispanic patients were admitted less frequently to the intensive care unit (ICU), and Black patients were less likely to require pressor support or hemodialysis (HD) compared with Caucasians. CONCLUSIONS: This observational analysis of a large integrated healthcare system early in the pandemic revealed that patients with COVID-19 did exhibit some racial variations in clinical presentation, laboratory data, and requirements for advanced monitoring and cardiopulmonary support, but these nuances did not dramatically alter in-hospital outcomes.


Subject(s)
COVID-19 , COVID-19/therapy , Hospitals , Humans , Race Factors , Retrospective Studies , SARS-CoV-2 , United States/epidemiology
9.
Vasc Med ; 26(6): 626-632, 2021 12.
Article in English | MEDLINE | ID: covidwho-1234444

ABSTRACT

Coronavirus disease 2019 (COVID-19) caused by SARS-CoV-2 is an ongoing viral pandemic marked by increased risk of thrombotic events. However, the role of platelets in the elevated observed thrombotic risk in COVID-19 and utility of antiplatelet agents in attenuating thrombosis is unknown. We aimed to determine if the antiplatelet effect of aspirin may mitigate risk of myocardial infarction, cerebrovascular accident, and venous thromboembolism in COVID-19. We evaluated 22,072 symptomatic patients tested for COVID-19. Propensity-matched analyses were performed to determine if treatment with aspirin or nonsteroidal anti-inflammatory drugs (NSAIDs) affected thrombotic outcomes in COVID-19. Neither aspirin nor NSAIDs affected mortality in COVID-19. Thus, aspirin does not appear to prevent thrombosis and death in COVID-19. The mechanisms of thrombosis in COVID-19, therefore, appear distinct and the role of platelets as direct mediators of SARS-CoV-2-mediated thrombosis warrants further investigation.


Subject(s)
Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Aspirin/administration & dosage , COVID-19/complications , Inpatients , Thrombosis/prevention & control , Adult , Aged , Anti-Inflammatory Agents, Non-Steroidal/adverse effects , Aspirin/adverse effects , Female , Hospitalization , Humans , Male , Middle Aged , Pandemics , SARS-CoV-2 , Thrombosis/virology
10.
Circ Res ; 128(8): 1214-1236, 2021 04 16.
Article in English | MEDLINE | ID: covidwho-1186415

ABSTRACT

A pandemic of historic impact, coronavirus disease 2019 (COVID-19) has potential consequences on the cardiovascular health of millions of people who survive infection worldwide. Severe acute respiratory syndrome-coronavirus 2 (SARS-CoV-2), the etiologic agent of COVID-19, can infect the heart, vascular tissues, and circulating cells through ACE2 (angiotensin-converting enzyme 2), the host cell receptor for the viral spike protein. Acute cardiac injury is a common extrapulmonary manifestation of COVID-19 with potential chronic consequences. This update provides a review of the clinical manifestations of cardiovascular involvement, potential direct SARS-CoV-2 and indirect immune response mechanisms impacting the cardiovascular system, and implications for the management of patients after recovery from acute COVID-19 infection.


Subject(s)
Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Cardiovascular Diseases/virology , Myocytes, Cardiac/virology , SARS-CoV-2/physiology , Virus Internalization , Biomarkers/metabolism , COVID-19/complications , COVID-19/epidemiology , COVID-19/therapy , Cardiomyopathies/virology , Gene Expression , Humans , Immune System/physiology , Myocardium/enzymology , Myocytes, Cardiac/enzymology , Neuropilin-1/metabolism , Platelet Activation , RNA, Messenger/metabolism , Renin-Angiotensin System/physiology , Return to Sport , Risk Factors , SARS-CoV-2/ultrastructure , Spike Glycoprotein, Coronavirus/metabolism , Troponin/metabolism , Ventricular Remodeling , Virus Attachment , Virus Internalization/drug effects
12.
Thromb J ; 18: 16, 2020.
Article in English | MEDLINE | ID: covidwho-742413

ABSTRACT

BACKGROUND: Patients infected with SARS-CoV-2 often develop venous and arterial thrombosis. The high patient mortality is partly attributed to thrombotic events. An emerging trend is the presence of immunological phenomena including antiphospholipid antibodies which may promote thrombosis. The mechanism for these observations is not clear though many patients with SARS-CoV-2 develop thrombocytopenia. CASE PRESENTATION: We describe a patient with SARS-CoV-2 pneumonitis who presented with intermediate risk pulmonary embolism (PE). Careful attention to his daily platelet count suggested the possibility of immune mediated heparin-induced thrombocytopenia (HIT) which was confirmed by laboratory testing and resolved when anticoagulation was switched to a direct thrombin inhibitor. CONCLUSIONS: Since excessive platelet activation and in situ thrombosis occur in HIT, this case underscores the need to consider that thrombocytopenia in patients with SARS-CoV-2-most of whom receive heparinoids-may be unrecognized HIT. A central role for the platelet in the etiology of thrombosis during the COVID-19 pandemic should be explored.

13.
EBioMedicine ; 58: 102907, 2020 Aug.
Article in English | MEDLINE | ID: covidwho-704827

ABSTRACT

BACKGROUND: SARS-CoV-2 enters cells by binding of its spike protein to angiotensin-converting enzyme 2 (ACE2). Angiotensin-converting enzyme inhibitors (ACEIs) or angiotensin II receptor blockers (ARBs) have been reported to increase ACE2 expression in animal models, and worse outcomes are reported in patients with co-morbidities commonly treated with these agents, leading to controversy during the COVID-19 pandemic over whether these drugs might be helpful or harmful. METHODS: Animal, in vitro and clinical data relevant to the biology of the renin-angiotensin system (RAS), its interaction with the kallikrein-kinin system (KKS) and SARS-CoV-2, and clinical studies were reviewed. FINDINGS AND INTERPRETATION: SARS-CoV-2 hijacks ACE2to invade and damage cells, downregulating ACE2, reducing its protective effects and exacerbating injurious Ang II effects. However, retrospective observational studies do not show higher risk of infection with ACEI or ARB use. Nevertheless, study of the RAS and KKS in the setting of coronaviral infection may yield therapeutic targets.


Subject(s)
Angiotensin Receptor Antagonists/therapeutic use , Angiotensin-Converting Enzyme Inhibitors/therapeutic use , Coronavirus Infections/drug therapy , Peptidyl-Dipeptidase A/metabolism , Pneumonia, Viral/drug therapy , Angiotensin Receptor Antagonists/pharmacology , Angiotensin-Converting Enzyme 2 , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Animals , Betacoronavirus/pathogenicity , COVID-19 , Coronavirus Infections/metabolism , Coronavirus Infections/pathology , Coronavirus Infections/virology , Humans , Kallikrein-Kinin System/drug effects , Pandemics , Peptidyl-Dipeptidase A/genetics , Pneumonia, Viral/metabolism , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Renin-Angiotensin System/drug effects , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL